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The biohybrid limb is conceptualized
as consisting of biological tissues and
non-biological materials. Concept -
ualizing a limb as a biohybrid organ
frees researchers and clinicians from
constraints imposed by biological 
tissue and biomaterials, respectively. 
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Left The Center for Restorative and Regenerative Medicine is a Center of Excellence of the Department of Veterans Affairs Rehabilitation
Research and Development Service. 
Right Brown University is the major academic collaborator with the Providence VA Medical Center.
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The Center for Restorative and Regenerative Medicine is a collaboration between the Providence

VA Medical Center and Brown University. The mission of the Center is to improve function for

individuals with limb trauma by developing technologically advanced solutions for the restora-

tion of limb function. To achieve this goal, the Center brings to bear state-of-the-art techniques

in tissue engineering, orthopaedics, neurotechnology, prosthetic design, and rehabilitation.

These are complementary techniques and they converge in the concept of the biohybrid limb –

composed of both biological and non-biological materials – enabling us to envision solutions

that transcend the limitations of biological tissue or prosthetic materials alone. 

Biohybrid structures are composed of both biological tissue and non-biological components.

Examples in current clinical use are joint replacements, in which metal implants are integrated

directly into bone. Biohybrid structures often have unique physical and physiological properties

resulting from the integration of tissues and materials that require full understanding before

they can be most effectively utilized in the clinical setting. Biohybrid limb research integrates

independent developments in regenerative medicine, neurotechnology, prosthetics, and ortho-

pedics to maximize limb function.

Long term goals of the Center are to:
• develop biomimetic prostheses.
• optimize the human-prosthesis interface with neural control devices, osseointegrated 

fixation, and lengthening of short residual limbs.
• explore regenerative medicine techniques for tissue restoration.
• develop advanced rehabilitation strategies for both physical and emotional injuries.
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The phoenix is emblematic of the goals of the Center for Restorative and Regenerative Medicine. A mythical symbol that appears in many cultures as
the representation of regeneration, restored function and new beginnings, the phoenix emerges from a crucible of fire that represents the hope of temper-
ing and strengthening. This phoenix is reminiscent of the Department of Veterans Affairs eagle. It is rendered in brown, red, and white, the colors of
Brown University, the Center’s major academic partner.
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The application of NMP technology has the potential to

restore lost neurologic function to disabled people and to provide

relatively precise control of physical devices, including prosthetic

limbs or semiautonomous robots. Our research will develop the

key elements of advanced NMP technology with integrated

microscale signal processors, innovative broadband optical telemetry

and powering, and miniaturized processors. In addition, we are

working on new mathematical models for representing and decod-

ing human neural coding to allow two-way communication

between machines and the nervous system. We are using this 

technology to establish the nature of control signals required for

humans to control complex devices. These neural control signals

have already been successfully used by persons with tetraplegia 

to control a computer for spelling, running software and assistive

devices.  These same signals could also command motion of para-

lyzed muscles or the actions of prosthetic limbs or electric wheel-

chairs. Our goal is to develop both control algorithms and user

interfaces that would enable human performance of robot naviga-

tion tasks or other complex interactions under neural control, and

to apply these advances to robotic limbs.

Advances in microelectronic devices and our understanding of 

neural plasticity suggest that linkages will be made between nerve

tissue and robotic prostheses in the foreseeable future. Our investi-

gations focus on the use of microelectronic devices and the devel-

opment of mathematical algorithms to translate complex patterns

of neural activity into control outputs for prosthetic devices.

In the human nervous system, sensory and motor information

are represented in patterns of electrical impulses (neuronal action

potentials), often called spikes. Research into these patterns has

paved the way for the development of closed-loop neuromotor

prostheses (NMPs), which have the potential to enable bidirectional

interaction between the human nervous system and external

devices. The emerging technology of NMPs combines cutting-edge

biomedicine, neuroscience, mathematics, computer science, and

engineering. This type of interface transcends earlier controllers

because it is based on neural spiking, a source of information-rich,

rapid, complex control signals from the nervous system. NMPs

promise an entirely new paradigm for building bionic systems 

that can restore lost neurological functions.

N E U R O T E C H N O L O G Y

Above (a) The BrainGate sensor, resting on a US penny, is connected by a 13-cm ribbon cable to the percutaneous titanium pedestal. (b) Its 100-electrode sensor,
(c) is positioned in the right precentral gyrus, (d) where it records brain activity. 
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The engineering of biological tissue may be able to restore function

lost to trauma or disease. Tissue engineering is accomplished by a

combination of cell-based and materials approaches and by delivery

of growth factor proteins that guide the differentiation of stem

cells to differentiated, mature cells capable of skeletal functions. 

CELL -BASED  T ISSUE  ENGINEER ING We are investi-

gating two areas of skeletal biology related to tissue engineering.

One set of studies is exploring physicochemical signaling and 

protein expression in bone cells, especially the response to oxygen

gradients. A second set of studies is engineering a transplantable

biocomposite cartilage replacement. A stem cell population has

been identified in joint lining tissues (synovium) that can be dif-

ferentiated into cartilage cells by exposure to specific sequences of

growth factors. These techniques will have a range of applications

including repairing, rather than replacing, damaged joints and

accelerating the repair of bone injuries. 

POLYMER-ENCAPSULATED GROWTH FACTORS

Growth factors are proteins involved in cell growth, repair and 

differentiation. One promising approach to growth factor delivery 

is encapsulation in bioerodible nano- or microspheres, which 

provide sequential release of growth factors to optimize tissue repair.

We have fabricated polymer microspheres in our laboratory to

encapsulate and release a wide variety of growth factors (including

insulin, IL-2, IL-12, growth hormone, FGF2, and TGF-ß1) while

maintaining greater than 90% bioactivity. These microspheres will

become part of a scaffold that will support and enhance cell growth.
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Above (a) Green fluorescence reveals deposition of extracellular matrix. (b) Biodegradable polymer beads release growth factor proteins according to an optimum
time schedule. (c) Cells transfected with genes regulating the synthesis of growth factors are encapsulated in polymer beads. (d) Nano-surfaces increase tissue growth.
Pictured at left is a traditional implant and pictured at right is a nano-implant surface.

IMMUNOISOLATED CELL  THERAPY Immunoisolated

cell therapy is another approach to the delivery of growth factors.

In this approach, living cells that have been genetically modified

to constitutively produce growth factors are encapsulated within

biodegradable polymer capsules. Systems are under development

which would permit release from the capsules to be chemically

switched on or off after implantation. This approach to drug delivery

is highly appealing because it delivers freshly synthesized, biologi-

cally active growth factors for release at consistent dose levels. 

NANOSTRUCTURED B IOMATER IALS Nanomaterials

are materials with one dimension less than 100 nm. Nanostructured

materials hold promise for numerous tissue engineering applications.

Nanomaterials have unique, tailorable surface energy properties

that control cell interactions resulting in tissue growth and repair.

The goal of Center research in this arena is to manipulate tradi-

tional materials used as implants to possess biologically inspired

nanometer surface features to increase tissue

growth for a wide range of applications.

R E G E N E R A T I V E  M E D I C I N E
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Biohybrid limb research is producing significant advances in lower extremity prosthetics. Biomimetic control, muscle-like actuation, and neuro-sensors will allow leg
amputees to experience improved responsiveness to their actions and wishes. The ultimate goal of this research is to restore amputee limb function to near normal levels. 
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Our goal is to design an ankle-foot prosthesis

that would mimic a normal walking gait and simu-

late natural joint function. We have conducted extensive studies 

of the human ankle to model its kinematics in order to provide 

the design specifications of this biomimetic ankle-foot prosthesis.

Creating prostheses that simulate the dynamics of joint

impedance and allow users to control motive force and joint 

position is of critical importance if prostheses are to truly mimic 

biologic function. Many currently available ankle-foot prostheses

employ passive-spring mechanisms that do not simulate natural

joint kinematics. They do not respond to sensory feedback from

the user, nor do they provide energy for forward progression. As 

a consequence, traversing uneven terrain, running, and climbing

are almost impossible for amputees using prostheses, while even

normal walking and changes in gait speed or direction create prob-

lems with balance and cause high energy expenditure and fatigue.

B I O M I M E T I C  P R O S T H E S E S

Above Schematic view of the biomimetic ankle for a below-knee prosthesis.

Biomimetic limb research seeks to simulate

normal joint function and mimic two-way commu-

nication between the prosthetic limb and the nervous system. 

The ankle-foot system will consist of four main mechanical

elements: a motor, transmission, series springs, and leaf-spring

foot. The leaf-spring provides shock absorption and energy storage.

The high-power output motor with transmission and series springs

will be combined into a rotary series elastic actuator (SEA) to

mimic the behavior of the human ankle joint. Previously developed

for legged robots, SEAs provide precise force control by controlling

the extent to which the series spring is compressed. SEAs can limit

maximum force in order to avoid harm to the human user, making

them a good choice for rehabilitation applications. 

Carbon Composite
Foot Structure

Bevel Gear

Gearhead

Motor
Series Springs
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Above (a-d) Examples of porous coated orthopaedics implants. (a) plasma spray, (b) porous surface, (c ) fibre metal, and (d) porous tantalum structure. Images courtesy
of J.Dennis Bobyn, Ph.D., Jo Miller Orthopaedic Research Laboratory, Montreal General Hospital, McGill University. (e) Gaps in lengthened bone showing gain in
length. (f ) Reconstitution of the periosteum and early calcification in the distraction gap. (g) Leg positioned in fixators during distraction osteogenesis.

T H E  H U M A N - P R O S T H E T I C  I N T E R F A C E

LIMB LENGTHENING A serious problem for traumatic

amputees is short residual limbs. For example, short residual prox-

imal tibias may not allow for fitting with a below-knee prosthesis

and may force the user to function as an above-knee amputee.

Often, the higher amputation requires a heavier, less functional,

and thus more awkward, proximal prosthesis, which increases the

energy cost of movement.

One solution is to lengthen a short residual limb by surgically

lengthening bone. This is accomplished by creating an osteotomy

and separating the bone ends by gradual distraction, a process

called distraction osteogenesis. Delayed bone healing is a complication

of distraction osteogenesis and can retard restoration of limb func-

tion. Our investigations have therefore focused on techniques of

accelerating or augmenting bone healing. 

Some of these techniques include the use of biomimetic scaf-

folds, growth factors, demineralized bone matrix, gene therapy,

and interaction with physical stimuli, including mechanical, 

ultrasound, and electrical energy. While the biology of distraction

osteogenesis has been fairly well explored, no paradigm exists for

augmented distraction. Therefore we are examining the effects of

growth factors and physical stimuli on vascularization and the syn-

thesis of cartilage and bone extracellular matrix using biological,

radiographic, and biomechanical measurements of consolidation.

These tissue engineering strategies hold the promise of accelerat-

ing the rate of elongation, maximizing the length of regenerated

bone, and diminishing osteoporosis and refracture. 

OSSEOINTEGRAT ION One example of a novel biohybrid

structure is an osseointegrated transcutaneous implant to create an

improved interface between a residual limb after amputation and 

a biomimetic prosthetic limb. The technique of osseointegration is 

a promising method of fixing a prosthesis directly to bone. Much

like hip replacements, this technique integrates titanium implants

with bone; however, the implants extend from the bone, exiting

through the skin to create an anchor for the prosthetic limb. This

method bypasses skin contact with the prosthesis, reducing pain.

The technique has raised concerns, however, because it destroys the

barrier function provided by skin, which prevents contamination of

the internal environment by the external environment. When path-

ways develop around the implant through the soft tissues, infection

and metal corrosion can result, which in turn can lead to additional

loss of bone in residual limbs. These concerns have focused our

attention on the interface of soft tissue – particularly skin – with

the implant. Our research goal is to develop an environmental seal,

integrating skin and dermis with the metal implant by promoting

adhesion to, or growth into, porous prosthetic surfaces. 

To that end, we are studying osseointegrated transcutaneous

implants with both materials and tissue engineering approaches.

We are determining optimum surface characteristics for the attach-

ment of soft tissues and are developing finite element models to

understand the mechanics of the skin-prosthesis interface.  
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One of the innovative aspects of our Center is a holistic approach

that integrates rehabilitation of physical and emotional injuries.

Consistent with the technological focus of the Center, we are

exploring virtual immersive environments and motion analysis 

as techniques to diagnose and treat these injuries. 

ASSESS ING  REHAB IL ITAT ION OUTCOMES

Our goals are to design and test therapeutic solutions, define 

functional demands, and prepare injured individuals for return to

functional activities and full participation in society. To that end,

we are developing assessment tools that measure functional deficits

and are responsive to change on an individual level. We are also

assessing the effectiveness of current interventions in clinical prac-

tice and exploring quality of life and mobility tests in patients

with lower extremity amputations and advanced prostheses. An

emphasis of our outcomes assessment research is the exploration of

self-report and physical performance tests to determine which tests

best reflect improvements in physical capabilities and how physical

function can be measured with most validity.

A D V A N C E D  R E H A B I L I T A T I O N
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Above (a) Rehabilitation and assessment of lower limb prosthetics. (b) A virtual reality motion detection system (CAREN). Image Courtesy of MOTEK. 
(c) Virtual immersive environment for physical and behavior rehabilitation.

ADVANCED REHAB IL ITAT ION Virtual immersive 

environments (virtual reality) can be used to expose individuals to

challenging visual, auditory, vestibular, tactile, and other sensory

experiences in safe, structured settings in order to diagnose and

treat both physical and emotional conditions. We are integrating

virtual reality and motion analysis facilities to explore individual

reactions to stress, simulate vocational environments, and enhance

high-performance training by both assessing and training capabilities,

especially as related to spatial navigation and mobility.

Our motion analysis techniques will permit definition of 

vocational requirements, enhance the design of prostheses and

rehabilitation regimens to meet those requirements, and test 

individual capabilities.

BEHAVIORAL  MEDIC INE  Virtual reality immersive 

environments can be used to both diagnose and treat Post

Traumatic Stress Disorder (PTSD). We are combining immersive

environments with advanced biofeedback using wireless sensors 

to study PTSD profiles by measuring psychophysiologic arousal

following acute stress. 

Virtual reality systems consist of PC-based programs, head-

mounted displays or high-resolution wall displays (CAVE) with 

3-dimensional spatial audio and head-and-limb tracking systems,

vibration platforms, and scent machines designed to create an

immersive experience representative of that encountered in combat.
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