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Abstract—Recent technological improvements have led to
increasing clinical use of interface pressure mapping for seat-
ing pressure evaluation, which often requires repeated assess-
ments. However, clinical conditions cannot be controlled as
closely as research settings, thereby creating challenges to sta-
tistical analysis of data. A multistage longitudinal analysis and
self-registration (LASR) technique is introduced that empha-
sizes real-time interface pressure image analysis in three
dimensions. Suitable for use in clinical settings, LASR is com-
posed of several modern statistical components, including a
segmentation method. The robustness of our segmentation
method is also shown. Application of LASR to analysis of data
from neuromuscular electrical stimulation (NMES) experi-
ments confirms that NMES improves static seating pressure
distributions in the sacral-ischial region over time. Dynamic
NMES also improves weight-shifting over time. These changes
may reduce the risk of pressure ulcer development.

Key words: biomedical imaging, gluteal stimulation, LASR,
longitudinal analysis and self-registration, interface pressure
mapping, neuromuscular electrical stimulation, pressure ulcers,
real-time statistical analysis, rehabilitation, seating pressure,
self-registration, translational research.

INTRODUCTION

Interface pressure mapping has become an increas-
ingly widely used assessment tool in wheelchair and seat-

ing clinics [1–2]. It is often used for clients with complex
seating needs as part of the evaluation procedure for cus-
tomized seating, including pressure-relieving cushions.
Such clients often require repeated evaluations, either
longitudinally or as an objective measure in the evalu-
ation of posture and function on different seating sys-
tems. Before its adoption in routine clinical use, interface
pressure distribution was used primarily in research
applications, such as our study, to determine the effects
of neuromuscular electrical stimulation (NMES) on pres-
sure ulcer prevention [3].

The move from research applications to clinical utility
has largely been due to manufacture-led improvements in
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both hardware and software: the design criteria for the
ideal pressure sensor system have been defined [4]. Sen-
sors have become more reliable and calibration proce-
dures have become more robust. More intuitive software
programs both increase the usability for the nonexpert
operator and allow real-time feedback on changing con-
ditions at the seating support interface. However, no sin-
gle device meets all the design criteria nor has one been
identified as the gold standard for interface pressure mea-
surement. Furthermore, techniques for the quantitative
analysis of pressure mapping data have not kept pace
with product development. Advanced analytical methods
have been reported for specific applications in research
studies. For example, Brienza et al. used a data reduction
and analysis technique based on singular value decompo-
sition (SVD) to compare interface pressure maps and
shape contour maps for seated subjects [5]. In this case,
the goal was to establish overall similarities between differ-
ent pressure measurements (via SVD). Aissaoui et al.
described a deformable active contour-segmentation
method that analyzed the pressure distribution at the
user-defined ischial region of the body-seat interface in
nondisabled subjects and subjects with paraplegia [6].
The goal of their study was to estimate the regional sur-
face and supported load of seated nondisabled individu-
als and individuals with spinal cord injury (SCI). In order
to enhance understanding of the body structural factors
that contribute to peak pressure, Hastings et al. developed
a registration technique to align X-ray computed tomog-
raphy (CT) data with pressure sensor data [7]. Our goal
was to employ an automatic approach with no observer-
selected region of interest. We further wished to conduct
clinical assessments when simultaneous differences
between seating cushions (i.e., for the entire spatial seat-
ing region) were the primary outcome of interest. This
approach is analogous to an experienced radiologist evalu-
ating a patient using multiple images simultaneously.
Thus, our approach seeks to determine the significance of
differences in all pixel locations simultaneously (i.e.,
pixel by pixel for all pixels simultaneously and subject by
subject).

Our goal cannot be achieved by only a snapshot or by
a small number of numerical values (e.g., mean and maxi-
mum). As stated in Stinson et al., “Anecdotal evidence
suggests that health care professionals tend to use the
pressure maps more than the numerical values” [8]. The
authors reported good agreement between maximum pres-
sure values and evaluations based on subjective ranking of

pressure maps from “best” to “poorest,” particularly when
the seating surfaces being compared were dissimilar, e.g.,
hard seating surface and foam/gel cushion. However,
average pressures and subjective rankings of similar seat-
ing surfaces did not show good agreement. Single-frame
pressure maps were used for comparison and evaluation,
thus no measure of change over time was considered. This
type of approach can be considered analogous to deter-
mining inner-city traffic patterns from a single 30,000 ft
aerial image; an overall impression at one moment may be
obtained but significant dynamic data are lost and no lon-
gitudinal information regarding change over time is feasi-
ble. Another example can be found in the typical pressure
maps depicted in Figure 1; comparison of the mean inter-
face pressure values would imply that Figure 1(b) is a
“better” pressure distribution because the mean pressure
is lower. Visual comparison shows clearly that Figure
1(a) is more homogeneous, i.e., regional interface pres-
sures are more evenly distributed. Including the maximum
pressure gives some further information, but even so,
regions of critically changing pressure distribution still
cannot be specified with the information from the maxi-
mum and mean values of an image alone.

A different analytical methodology for quantitative
assessment of change over time or under different condi-
tions for the full pressure map is needed for enhanced
clinical evaluation of interface pressure distribution. In
the clinical setting, the different conditions can include
repeated short-term assessments such as assessing a cli-
ent for three different seating cushions or evaluating the
same seating system in different configurations, e.g., tilt-
in-space or with footrest adjustment. Clients are also
often seen on more than one occasion over a period of
months or years, and the ability to register maps/images
to make valid comparisons between pressure maps
obtained over long intervals is important. In either situ-
ation, clinical interpretation is most efficient if pressure
maps can be analyzed in a real-time or near real-time
manner. As defined further in the “Description of LASR
Algorithm” section, p. 526, pressure mapping produces
large volume data sets. As a result, the ability to provide
real-time analysis has been limited because of the
extended processing times required.

This article presents an analytical technique, longitu-
dinal analysis and self-registration (LASR), that deter-
mines statistically valid changes between baseline and
posttreatment pressure maps obtained over both the
short- and long-term. The LASR algorithm employs data
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mining techniques to allow rapid maximum information
recovery from the large volume of data obtained for each
subject assessed. The analysis of the pressure mapping
data shows that NMES is effective in changing seating
interface pressures in a manner that may indicate
improved tissue health. This finding has motivated our
future design of an improved clinical protocol for collecting
image data and developing an optimal patient-oriented
NMES treatment plan. The LASR tool is available from
our Web site <http://stat.case.edu/lasr/>. Further statisti-
cal justification and proofs are available in Wang et al.
[9]. The current article uses terminology that is suitable
for the clinical and biomedical communities. The clinical
application and three-dimensional (3-D) processing of
images are emphasized. The robustness of our segmenta-
tion method against misspecification of the signal distri-
bution is justified here for the first time.

A major issue in both research and clinical applica-
tions of interface pressure measurement is that not only
has no gold standard sensor system been identified but
also no gold standard methodological approach to ana-
lyzing this type of data currently exists [10]. We hope

that our approach changes this situation somewhat and
sets a benchmark for future comparisons.

METHODS

Clinical Problem
The pressure mapping data we used to develop the

statistical algorithm were obtained from assessment of
individuals with SCI who were enrolled in a study to
determine the effects of NMES on tissue health. Several
variables, including interface pressure measurements,
were monitored to determine both long- and short-term
effects of using gluteal NMES [11–12]. Since our goal
here was to present a new approach to pressure mapping,
other outcomes measures were outside the focus of this
article. The long-term effects of chronic use of gluteal
NMES were determined by assessments of static seating
pressure distribution, repeated at intervals of several
months. Over this time frame, hypertrophic muscle
changes produced by gluteal NMES ideally lead to
reduced pressure in the ischial region, producing a
smoother pressure contour if a section is taken across the

Figure 1.
Typical interface pressure maps: (a) homogenous pressure distribution, mean overall pressure 39 mmHg, and (b) heterogeneous pressure
distribution concentrated in ischial region, mean overall pressure 31 mmHg. Colorbar indicates calibrated pressure in mmHg. Images oriented
with back of seating surface to right (Y) and left thigh to base (X).
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region. Short-term changes also occurred in response to
alternating left (L)/right (R) stimulation that produced
weight-shifting from L to R while subjects were seated in
the wheelchair. These effects were determined with real-
time assessment of dynamically changing pressure distri-
butions. In this case, increased strength of muscle con-
tractions due to long-term use of NMES ideally leads to
increased amplitude of cyclical pressure variations.

Repeated assessments were obtained for 10 individu-
als with SCI; 2 subjects served as controls and received
no NMES between assessments. One of the two control
subjects subsequently received a stimulation system that
provided regular NMES of the paralyzed gluteal muscles
for improvement of tissue health [3]. The nine test sub-
jects received stimulation systems that provided regular
NMES of the paralyzed gluteal muscles either for exer-
cise or standing. Thus we had a total of 11 cases to con-
sider for analysis: 2 control cases and 9 treatment cases
from 10 subjects. 

Interface pressure distribution was recorded with a
40 × 38 cell sensor mat (Advanced Clinical Seating Sys-
tem, Tekscan, Inc; Boston, Massachusetts). Each cell in
the sensor mat represents an individual pressure mea-
surement. We collected the data by scanning the subject/
support interface at 2 frames/s for a 200 s period while
the subject sat quietly to give a 400-frame data set (called
a static data movie).

We then assessed the effects of NMES by applying
dynamic weight shifting stimulation to the L and R glu-
teal muscles; more specifically stimulation was applied
in an alternating pattern to each muscle, with one muscle
(L) being stimulated for 15 s while the other (R) was off
stimulation for the same 15 s. The stimulation activity
was then reversed (L off/R on), leading to a 50 percent
active duty cycle for each muscle, with the L/R muscle
contractions out of phase. Interface pressures were evalu-
ated concurrently at the same scan rate (called a dynamic
data movie). NMES was then discontinued and a final
static data movie was obtained while the subject sat qui-
etly in the wheelchair. This protocol was carried out at
baseline and repeated at all follow-up assessments.

Description of LASR Algorithm
Our study included a large amount of image data for

relatively few subjects. More specifically, 10 subjects
were seen for 3 to 6 assessments each, and 1 subject had
only two assessments. At each assessment, typically
three movies (Nm = 3 data sets) were obtained. Each

movie contained a sequence of 400 frames (Nf = 400
images), and each frame contained an array of 40 × 38
pixels (Np = 40 × 38 data points). Therefore, each subject
had (3 ~ 6) × Nm × Nf × Np = 4,320,000 ~ 8,640,000
measurements, which is a huge number compared with
the small number of subjects (n = 10 or 11). This type of
“large-p-small-n” data also occurs frequently in other
clinical research studies, such as functional magnetic reso-
nance imaging (fMRI) studies and microarray data analy-
ses. Although reporting results of a single or only a few
subjects is not uncommon in biomedical engineering
literature [13–14], such data pose a challenge to proper
statistical analysis. The multiple comparison nature of
many pixels is addressed by our LASR algorithm.

Further complexity was added to the analytical proc-
ess because even though the subjects were seated care-
fully at each assessment, ensuring a true reproduction of
a previous seating posture on each visit is often not feasi-
ble in a clinical setting. Thus, performing an adequate
spatial registration is often necessary to align pressure
maps obtained at different times. In assessing the effects
of dynamic stimulation over time, we must also ensure
that comparison is made between pressure maps obtained
at the same phase of stimulation, e.g., when L gluteal
NMES is on. Hence, a temporal registration is also
needed to ensure two dynamic pressure movies are syn-
chronous in their comparisons. The LASR algorithm uses
a multistage procedure to sequentially address the numer-
ous challenges from the registration to multiple compari-
sons, “large-p-small-n” data, and other data analysis
issues (Figure 2).

Most existing registration schemes were developed
for applications to radiological images, such as CT, mag-
netic resonance imaging, and nuclear medicine images
[15–17]. Normally, a registration procedure involves two
images; one is used as the reference and the other is the
floating image. Typically, either a similarity measure,
such as correlation coefficient or mutual information
between the reference and floating images, is used for the
registration process or landmarks are identified to aid in
the alignment of two images [15–19]. In our study, using
either correlation or mutual information to spatially align
images was not appropriate because what we need to
detect are the differences at the same locations (although
the correlation measure can be modified for temporal
alignment as shown here). Also, our images represent
pressure rather than anatomical structures as seen in
radiological images, and hence the landmarks will have
to be different from those for anatomical images. Indeed,
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the suitable landmarks for symmetrical objects such as
ours are a midline (Figure 3) and an endpoint, estimated
with a program based on a statistical regression analysis.

Using landmarks and registering movies frame by
frame (or image by image) with a “reference” image can
be done in principle but would be a daunting and highly
time-consuming task in practice, thus automatic methods
are important. LASR is a “self-registration” algorithm in
which each image is automatically centered using its own
landmarks, i.e., no reference image is needed. This self-
registration is in the same spirit as data normalization in
A statistics. To the best of our knowledge, no report
exists on a self-registration algorithm like ours for image
registration.

In order to identify regions with significant baseline/
posttreatment differences in the NMES data, we per-
formed pixel-by-pixel “t-type” tests (which are different

from the standard t-test that is based on the average of an
independently and identically distributed [i.i.d.] sample)
after performing bivariate local smoothing over the data.
Bivariate smoothing is necessary because no replicate or
i.i.d. samples are present at each pixel. This type of tech-
nique is standard in statistics and allows us to “borrow”
the information from the neighborhood to mimic an i.i.d.
sample. Now, the resulting t-type statistics at nearby pix-
els can be correlated. At each pixel (or data point), the
null hypothesis is that no pressure difference is present
between baseline and treatment. The pixels for which the
test statistics exceed some threshold are classified as
active or significant.

Our LASR algorithm is depicted in Figure 2 and
described in detail in the Appendix (available online
only at http://www.rehab.research.va.gov/), in which the
robustness of the expectation maximization segmentation
method is presented for the first time.

LASR Summary
The LASR output map gives a graphical representation

of significant p-values and hence statistically significant
pressure changes across the entire mapped region. The map
helps us decide if gluteal NMES is effective by simulta-
neously comparing differences at many locations, with
each pixel displaying an analogy of the simple p-value
corrected for a false-discovery rate (FDR) threshold of no
more than 0.05. The algorithm is applied frame-by-frame

Figure 2.
Longitudinal analysis and self-registration (LASR) algorithm procedural
flow chart.

Figure 3.
Effects of segmentation on boundary properties: (a) before and (b) after
segmentation. Image (b) shows location of midline, defined as midline
between legs, and endpoint, defined as intersection of midline and
posterior margin of region of interest. Images are oriented with back
of seating surface to base and left thigh to left.
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to aligned pressure data sets. LASR maps can thus be
viewed as single frame “snapshots,” suitable for compari-
son of static seating postures or as videos for comparison
of dynamically changing pressures. Application of the
LASR algorithm to paired pressure data sets requires a
total processing time of 2 to 3 minutes following input of
the raw data to output of the LASR map.

T-maps show a t-type test statistic at each pixel and
are an intermediate step in the LASR analysis procedure
(Appendix). T-maps derived from matched experimental
data sets (from the same subjects) are preferable to those
from unmatched independent experiments because nui-
sance factors, such as subject variation, can be reduced or
subtracted in the matched experiment. Additionally, any
potential effect on FDR due to possible elevated back-
ground noise is subtracted in difference images.

Since our filtering procedure is nonparametric, the
outcome from our LASR procedure could be called sta-
tistical smoothing mapping in contrast to the statistical
parametric mapping defined by Frackowiak et al. [20].

RESULTS

All LASR analysis is for 3-D data; however, in some
cases visualizing important features from two-dimensional
(2-D) images is easier. Our results are therefore presented
as a combination of 2- and 3-D images to maximize the
information provided. LASR analysis was applied to
assess both decreases and increases in pressure from
baseline. We found that for all NMES subjects, signifi-
cant pressure increases were observed only in regions
where no pressure would be expected, e.g., between the
legs; therefore, no meaningful increases existed, and we
searched only if significant decreases were noted. Because
of space constraints, we present details of four typical
analyses: two for control subjects and two for gluteal
NMES subjects. Results for all subjects in both static and
dynamic mappings are also summarized.

Control Subjects

Subject A
Seating pressure assessments were obtained at an

interval of 3 months, during which time no gluteal NMES
was used. Pressure mapping assessment for subject A
showed some spatial misalignment (Figure 4(a)–(b)),
thus spatial registration was conducted to align images

before creating difference and T-maps in Figure 4(c)–(d).
Qualitative evaluation of baseline/repeat pressure maps
appeared, as expected, to indicate no changes in pressure
distribution over time; however, statistical significance
was further checked with LASR.

After applying the LASR algorithm to assess changes
between baseline and repeat interface pressure data sets,
we could see from the low flat T-map (Figure 4(c)–(d))
and the blank P-map* (not shown) that no significant dif-
ferences were present in interface pressure distributions
for this subject.

Subject B
Seating pressure assessments were obtained at an

interval of 6 months, during which time no gluteal
NMES was used. Pressure mapping assessment for sub-
ject B showed some spatial misalignment (Figure 5).
Qualitative evaluation of baseline/repeat pressure maps
appeared to show clearly that regional interface pressures
were higher at the second assessment. This finding would
appear to indicate that pressure distribution had deteri-
orated over time, placing the subject at higher risk of tis-
sue breakdown. Further statistical analysis was carried
out, and following registration, LASR analysis showed
that these differences were not statistically significant.
The FDR-controlled P-map is blank and is therefore not
shown.

Gluteal NMES Users

Static Pressure Mapping

Subject C. At an interval of 6 months, subject C
received seating pressure assessments, during which time
gluteal NMES was used regularly for exercise. Pressure
mapping assessment for subject C appeared to show rea-
sonable spatial alignment (Figure 6(a)–(b)), but we still
conducted spatial registration to align images and correct
any differences in alignment that were not visually obvi-
ous. Qualitative visual evaluation of baseline/posttreat-
ment pressure maps also appeared to indicate some
positive changes in pressure distribution over time, i.e.,
ischial region pressures appeared to decrease. However,
this result could not be shown to be statistically signifi-
cant without further detailed analysis.

*The P-map is the LASR output map and shows FDR-corrected prob-
ability values at each pixel. See Step 6 of Appendix.
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After applying the LASR analysis, we could see that
some misalignment was present between images and in
some regions interface pressures were reduced bilaterally
over time (Figure 6(c)–(f)). Clearly, the L sacral-ischial
region was more extensively affected than the R.

Subject D.  Seating pressure assessments were obtained
at an interval of 6 months, during which time gluteal
NMES was used regularly for exercise. Pressure mapping
assessment for subject D showed poor spatial alignment,
with both translation and rotation occurring between the

baseline and posttreatment images (Figure 7(a)–(b)).
Qualitative evaluation of longitudinal changes could not
readily be performed without further image analysis.
After applying the LASR algorithm to assess changes
between baseline and posttreatment interface pressure
data sets, we could see that pressures were reduced bilat-
erally over time (Figure 7(c)–(f)). The L and R sacral-
ischial regions were equally affected.

Summary of Other Subjects.  LASR algorithm out-
comes are summarized for all six treatment subjects who

Figure 4.
Subject A assessments repeated at 3-month interval: (a) baseline control, (b) repeated measure, (c) difference after registration, (d) T-map.
Subject did not use gluteal neuromuscular electrical stimulation, and no changes in treatment were noted between assessments. All images
orientated with back of seating surface to right (Y = 50) and left thigh to base (X = 0). (a)–(b) Unprocessed pressure data maps; (c)–(d)
longitudinal analysis and self-registration (LASR) analysis of long-term changes in static mode seated pressure distribution. (c) Difference map
shows differences between baseline and last follow-up assessment after spatial alignment and registration. (d) T-map shows differences adjusted
for neighborhood values, i.e., weighted average differences.
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had consistent data. Figure 8 shows 2-D P-maps for sub-
jects C–H. Four of the six subjects exhibited significant
changes in interface pressures in the sacral-ischial region.
The extent of these changes varied from the extensive
bilateral variations seen in subject D to small regions of
change in the sacrum and R ischial areas of subject E.
Subject E also exhibited significant changes in interface
pressures under the thigh region—possibly indicating a
more stable sitting posture with regular use of NMES.

Subjects F and H did not show any appreciable dif-
ference in interface pressure distributions from initial to
final assessment. However, baseline data were not avail-
able for these subjects and thus comparisons were made
following initial conditioning.

Dynamic Pressure Mapping
In developing the temporal registration stage of the

LASR algorithm, we assumed that the pressure variations
exhibited a regular periodicity. This regularity allowed
them to be brought into phase (temporally registered) for
direct interassessment comparison. Dynamic changes in
interface pressure distributions are then presented in a
video format, comparable to a motion analysis output. In
the current study, the effects of dynamic gluteal NMES
were assessed using real-time interface pressure map-
ping. We proposed that the response to gluteal NMES
would increase over several months of regular use as the
stimulated muscles became stronger. Application of the
LASR algorithm to initial stimulation data sets and
response after 6 months of regular use showed significant
changes in interface pressures for both subjects C and D.

Subject C showed changes predominantly on the L side
under the thigh region as well as the ischial region, with
some areas of change also occurring in the R ischial
region. This result is consistent with the conclusion we
had from the static movies. Subject D showed changes
bilaterally in the ischial region. Relevant LASR movies
can be viewed a <http://stat.case.edu/lasr/>.

DISCUSSION

The field of clinical pressure mapping has undergone
great development during the past decade as a result of
improved technology and graphical user interfaces. The
next critical step is to improve the clinical utility of the
data obtained by maximizing information retrieval.

The development of the multistage statistical LASR
algorithm allows both clinicians and researchers to derive
more useful, objective information from pressure maps,
such as the location of significant pressure changes or the
relative efficacy of pressure relief procedures. Further-
more, spatial registration allows global analysis of base-
line/posttreatment differences without any subjective bias
in selecting areas of interest. Further statistical justifica-
tion of each component of the LASR algorithm can be
found in the work of Wang and colleagues [9,21].

LASR movies rather than LASR maps can help
decide which 5 percent of reported activations are most
likely the false ones, because these false ones will not
persistently appear to be significant over time (see differ-
ence and FDR movies on http://stat.case.edu/lasr/). As
shown on our LASR Web site, those activations in the
lower R thigh of subject C (upper L corner) and in the
sacral region for subject D (middle R of image area) are
most likely to be false positives. Note that for subject C,
we compared the baseline session with the third session
when producing both the static and dynamic data movies.
For subject D, we did not have the baseline dynamic data,
so the difference movie for the dynamic data is between
the second and the third session, while the difference
movie for the static data is between the first and third ses-
sion. Nevertheless, looking at both dynamic and static P-
movies for subject D, we still have more information
(than if we had no movies) to decide which 5 percent of
reported activations might be the false ones.

In the specific study of the effects of gluteal NMES,
we found that subjects who received a gluteal stimulation
system showed statistically significant decreases in ischial

Figure 5.
Subject B assessments repeated at 6-month interval. Subject did not use
gluteal neuromuscular electrical stimulation, and no changes in treatment
were noted between assessments. (a) Baseline and (b) repeated
measure unprocessed pressure data maps. Images are orientated with
back of seating surface to base and left thigh to left.



531

BOGIE et al. New technique for real-time interface pressure analysis
Figure 6.
Subject C assessments repeated at 6-month interval. Subject C used gluteal neuromuscular electrical stimulation regularly for exercise between
assessments. All images are orientated with back of seating surface to right (Y = 50) and left thigh to base (X = 0). (a) Baseline and (b) repeated
measure unprocessed pressure data maps, (c)–(f) Longitudinal analysis and self-registration (LASR) analysis of long-term changes in static mode
seated pressure distribution. (c) Difference map after spatial alignment and registration; (d) smoothing map shows smoothed difference map; (e) T-
map shows differences adjusted for neighborhood values, i.e., weighted average differences; (f) false-discovery rate (FDR)-controlled P map
shows areas of significant decrease calculated simultaneously for every data point over entire contact area. Each positive point (p-value)
represents point where baseline/posttreatment differences are statistically significant. This positive value is set to give pixel value of 1 – p, where p is
p-value that is < FDR cutoff value. Otherwise, pixel value is 0. Colorbar indicates calibrated pressure in mmHg.
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Figure 7.
Subject D assessments repeated at 6-month interval. Subject D used gluteal neuromuscular electrical stimulation regularly for exercise between
assessments. (a) Baseline and (b) repeated measure unprocessed pressure data maps. Note: Pressure sensor was rotated at second assessment.
Subject is seated with back of seating surface to top (X = 40) and left thigh to left (Y = 0) in baseline image. In second image, subject is seated
with back of seating surface to right (Y = 50) and left thigh to base (X = 0). (c)–(f) Longitudinal analysis and self-registration (LASR) analysis of
long-term changes in static mode seated pressure distribution. Images (c)–(f) are orientated with back of seating surface to top (X = 40) and left
thigh to left (Y = 0). (c) Difference map after spatial alignment and registration; (d) smoothed difference map; (e) T-map shows differences
adjusted for neighborhood values, i.e., weighted average differences; (f) FDR-controlled P-map shows areas of significant decrease calculated
simultaneously for every data point over entire contact area. Each positive point (p-value) represents point where baseline/posttreatment
differences are statistically significant. Pixel value is calculated as for Figure 6. FDR = false-discovery rate.
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Figure 8.
Summary P-maps for 6 treatment subjects. All images are orientated with back of seating surface to right and left thigh to base and show points of
significantly decreased pressure.
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region pressures over time when baseline/posttreatment
comparisons were made. The control subject who did not
receive gluteal NMES showed no significant change in
seated interface pressures. We also found that statistically
significant increases only occurred in regions that would
not be expected to exhibit any applied pressures. This
finding reinforces the need to carry out an initial mea-
surement with no load at each assessment session in
order to calibrate for variations in background brightness.
This change in data collection protocol would possibly
improve response detection.

The region of significant change was not symmetri-
cal in all subjects who received gluteal NMES, reflecting
the asymmetric nature both of gluteal muscle recruitment
area and contractile responses. In two cases where we did
not have baseline data (subjects F and H), initial pressure
distributions were obtained after initial conditioning or
treatment. Comparison with data from the final assess-
ments for these subjects did not show significant changes
from the pressure distributions after the initial condition-
ing (Figure 8). This finding implies that perhaps for
these two subjects, the majority of the intrinsic changes
in tissue characteristics occurred acutely, i.e., during
early treatment, and that continued regular use of gluteal
NMES maintained these improved responses. Given that
NMES is effective as shown in this article, this result
motivates us to study the length of treatment suitable for
each subject in the next phase of our study. We will also
examine if what happened to these six individuals applies
to other subjects after a critical time point.

A “safe” interface pressure for one individual may be
a primary factor leading to tissue breakdown in another.
The LASR technique determines global significant dif-
ferences relative to the baseline values for each subject,
with an appropriate correction for multiple comparisons.
Thus changes are identified on an individualized basis
rather than by a universal and somewhat arbitrary cutoff
figure [4].

CONCLUSIONS

Application of the LASR algorithm enhanced data
extraction from the complex pressure data sets obtained
from repeated assessments of individuals using NMES
for regular gluteal stimulation. We found that statistically
significant decreases in the sacral-ischial region pressure
distributions occurred over time. Furthermore, the dynamic

response to gluteal NMES changed significantly over
time with continued regular use.

Application of the LASR algorithm to our data high-
lighted the need to closely control reproduction of seating
position between evaluations and to carry out an initial
no-load measurement at each evaluation session. The
need for spatial registration of pressure data can be
reduced by application of a monitoring protocol to avoid
severe inconsistency in future pressure mapping data.

We should also note that an analytical technique to
rapidly compare 3-D images with no fixed landmarks has
wide potential application. The longitudinal and spatial
nature of our pressure mapping data is similar to that of
fMRI data. Other clinical applications could include
other soft tissue images with no bony landmarks. The
experience from the current study will be helpful in the
future for analysis of images from fMRI and modalities
other than pressure mapping. Applications could also
include situations where an imaged object changes
dimensions and/or orientation over time. Nonclinical
examples of this scenario include the development of
insect swarms, changes in traffic patterns, or tracking
ocean icebergs.

The current iteration of the LASR algorithm uses the
midline as a landmark and assumes that the imaging scale
is constant over time. This protocol is justified in our
study; however, further development of the LASR algo-
rithm can adapt to other types of landmarks. Advances in
the LASR algorithm will encompass techniques to
accommodate dimensional and periodic variability. Thus,
the LASR analytical methodology has the potential to
become a powerful new tool in the field of real-time
image analysis.
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Appendix. Longitudinal Analysis and Self-Registration (LASR) Algorithm  

STEP 1: PERFORM SEGMENTATION ON IMAGES TO SEPARATE PIXELS IN 

BACKGROUND FROM SITTING CONTACT AREA 

Although there are many segmentation algorithms for radiologic images, methods vary widely 

depending on the specific applications, imaging modality, and other factors. From the statistical 

point of views, all segmentation methods can be considered as classification techniques especially 

established for image analyses. Thresholding is a simple yet often effective means for obtaining 

segmentation in images where different structures have contrasting intensities or other 

quantifiable features [1-3]. In the current application, the pixel values of the pressure maps 

represent the applied pressure. It is reasonable to assume that an optimal threshold pressure will 

separate background noise from true contact area. 

Segmentation minimizes both possible effects of the noise from background on the midline 

estimation (described below) and the boundary effect from smoothing described in Step 4 

(Appendix Figure 1). Since intensity values at background pixels are much lower than those at 

sitting regions, the threshold segmentation method described below is optimal from the statistical 

point of view [4] and confirmed by Appendix Table 1 below. Specifically, each data frame is 

partitioned into two distinct parts by classifying those less than a threshold T to the background 

and those greater than T to the sitting contact area. The value of T is estimated by first modeling 

the distribution of all pixels as a finite mixture of normal distributions of the form:  

                                 1 1 2 2( ) ( ) ... ( )k kf x f x f xα α α+ + +  

where if  are normal densities, αi‘s are nonnegative mixing parameters that sum to ∑αi=1, and k  

will be determined by a model selection procedure such as Akaike information criterion (AIC) or 

Bayesian information criterion (BIC) [5], and then computing the optimal threshold value T by a 

data-driven EM algorithm [6]that minimizes the expected misclassification rate (EMR) defined in 

[4]. The EMR is given by 



                              { }1 1 2 2( ) ( ) [ ( ) ... ( )]
T

k k
T

EMRT f z dz f s f s dzα α α
+∞

−∞
= + + +∫ ∫ .   

This EMR is the summation of the probability that a pixel value from the background (modeled 

by 1f ) is misclassified to the sitting contact area plus the probability that a pixel value from a 

sitting contact area (modeled by 2 2 ( ) ... ( )k kf x f xα α+ + , proportionally) is misclassified into the 

background area, thus T is the value that minimizes EMR(T).All unknown parameters in the 

component densities if   and mixing parameters 1α ,…, kα are estimated automatically by the 

EM algorithm. Note that in most cases a mixture of two or three normal distributions fits the 

density of pixels in a sitting region well (i.e. 3k =  or 4) .However, our estimate of T is relatively 

robust no matter whether we fit a 3- or 4- component normal mixture to the data. Appendix 

Table 2 shows the true background and signal distributions as well as true k  and T  in the first 

three columns. The remaining columns in Appendix Table 2 contain the average values and the 

standard deviations of the threshold value T  estimated by our EM algorithm when k  is specified 

either as 2, 3, or 4 based on the AIC for the same data sets from 100 simulation experiments, each 

with a sample size of 500. It is clear from this table that even when the estimate k̂  is different 

from the true k , the estimated thresholds for correctly identified k  (the boldfaced value), and 

incorrectly identified k  are all very close to the true threshold. Hence our segmentation 

procedure is effective and robust against the variation in the estimate of k . 

Appendix Table 1 further confirms the robustness of the threshold segmentation procedure for 

our problem by computing the exact threshold for signal distributions of various components. The 

first 5 rows show that the threshold changes minimally as long as the background distribution is 

the same and far away from the signal distribution. The number of components in the signal 

distribution has minimal effect on the threshold value. The last 5 rows show examples chosen to 

mimic the current study data. Other authors have started with one normal density for the signal 

region and then suggested "bias corrections" if there were more components in the signal region 



[7]. Our method directly computes k by AIC or BIC and then computes the optimal T once for all, 

thus facilitating rapid data processing. 

STEP 2: SPATIAL AND TEMPORAL REGISTRATION 

Step 2.1 (Spatial Registration) 

All images are spatially registered using our newly developed self-registration scheme [4, 8] as 

follows:  

(a) Zero all pixel values in the background region. 

(b) Estimate the “random landmarks”: an end point and a midline (the human midline between 

two legs) by a regression analysis applied to “apparent middle points” equivalent to the mid-point 

of each column of an image. 

(c) Transform the raw image into one that is centered at the midline and has the end point at the 

same place of the image. This step is done automatically for all images in a dataset (movie) so 

that all registered images are automatically standardized for future direct comparisons. 

Step 2.2 (Temporal Registration) 

If the two movies for comparison are both dynamic, the algorithm then also temporally registers 

the spatially registered movies. The temporal registration is based on a fast algorithm that aligns 

images at the same time point (i.e. a particular frame in one movie with another frame in another 

movie) by maximizing the correlation of intensities, i.e. pressure values, between images from 

two candidate movies so that the intensities are compared under the same conditions, i.e., they are 

compared pixel by pixel when both pixels are from the same location and are subject to the same 

dynamic stimulation. Specifically, we first throw away a few unstable images from both movies, 

let  n be the remaining number of frames from each movie, and then align the first frame in movie 

one with jth frame of movie two, where j is the value that maximizes 1( ) ( , )i i ji
n j cor A B−

+− ∑ , 

and ,i iA B indicate the intensity values of the  i th image frame from two movies. Thus the left 



side stimulated image in one movie is compared with the left-side stimulated image in another 

movie. See movies at stat.case.edu/lasr/. 

STEP 3: CREATE DIFFERENCE MAPS/MOVIES 

Difference images and movies are created by taking differences pixel-by-pixel (and frame-by-

frame) between two movies that are potentially clinically interesting. In the current study all 

difference images and movies were created between the first dataset collected at baseline 

assessment and the last dataset of the final assessment in the available time series. 

STEP 4: COMPUTE FILTERED MAPS/MOVIES  

A nonparametric filtering procedure is important because we do not have a-priori knowledge of 

the shape of the differences between pairs of movies to postulate a parametric model. A local-

polynomial smoothing technique is used that keeps the local distribution structure while filtering 

out noise. We first padded an image at a small neighborhood of a sitting region (segmented out by 

Step 1) with the pixel value at the edge of the sitting region and then used smoothing to filter the 

image on this extended region (the sitting region plus the neighborhood) and finally “cut back" 

the image to the sitting region to avoid the boundary effect which can occur with any 

nonparametric smoothing procedure. This padding idea is similar in spirit to that used in 

Charnigo et al [9] for their semi-local denoising paradigm [9]. 

Step 5: CREATE T IMAGE/MAPS AND MOVIES  

T images are obtained by computing a test statistic at each pixel in the spirit of a two-sample 

paired t-test but differs from the t-test in the following way; our test statistic at each pixel x is Tx 

= Dx/Sx, where Dx is the pixel value of a filtered difference image, i.e. a weighted average of the 

difference values in a neighborhood of x from a difference image obtained in Step 4 (versus a 

simple average of an independent and identically distributed sample drawn at the same location x, 

in a two-sample t-test scenario), and Sx is an appropriately estimated standard deviation of Dx. We 

then computed the individual significance, or P value, of each pixel difference. 

 



Step 6: COMPUTE AND CREATE FALSE DISCOVERY RATE-CONTROLLED P 

MAPS/MOVIES  

Each of the individual P values from Step 5 allows us to decide if two images are significantly 

different at that pixel. However, there are many pixels in an image that are examined 

simultaneously, called multiple comparisons in statistics. We must therefore use an effective 

procedure to control a global error rate for this multiple testing problem, as mentioned above. The 

false discovery rate (FDR) is the expected value of “the percentage of false discoveries among all 

claimed discoveries” [10]. Here the discoveries are all the pixels at which there are significant 

differences/changes. The threshold for controlling such a FDR at 0.05 is often smaller than a 

simple 0.05 cut-off value used for a single test (here a single pixel) unless the number of pixels is 

one. A basic 0.05 FDR-controlled threshold is that defined by Benjamini and Hochberg [10]. 

Appendix Figure 2 illustrates how a level-α  FDR-controlled threshold is computed: (1) sort all 

individual p-values computed at each pixel based on an approximate t-distribution, in an 

ascending order, so they are now (1) (2) ( )... mp p p≤ ≤ ≤ , where m is the number of pixels; (2) 

plot them against 1:m; (3) find the largest index value i  in 1:m at which these sorted p-values 

does not cross the straight line ( )iy m= α , call this index value k; and (4) the level-α  FDR-

controlled threshold is then ( )kp , which can be written mathematically as 

                                               ( ) ( ) ( )max{ :1 , }k i i
ip p i m p
m
α= ≤ ≤ ≤ . 

Zhang’s work [11] contains an improvement to the above threshold definition. Then all the pixels 

with individual p-values less than this ( )kp  (often much smaller than α ) are deemed active or 

significant. In building our FDR-controlled P maps or movies if a P value p at a pixel x is less 

than the critical value p(k), we change the pixel value to 1 − p. If p is greater than the FDR cut-off 

value, the pixel value is set to zero. The resulting FDR-controlled P maps or movies show areas 

with significantly decreased interface pressures, implying improved tissue health. 



Appendix Figure 1.  

Effects of segmentation on boundary properties. After segmentation image shows location of 

midline, defined as the midline between legs, and endpoint, defined as intersection of midline and 

posterior margin of region of interest. 

 Before segmentation After segmentation 

End point 
Midline 



Appendix Table 1.  

Robustness of Methods. N(a,b) denotes the normal distribution with mean a and variance b. 

 

Appendix Table 2.  

Simulation for robustness of expectation maximization (EM) segmentation method. N(a,b) 

denotes the normal distribution with mean a and variance b. 

SD= standard deviation. 
 

Background 
distribution 

Signal distribution True threshold True 
Value k 

0.2*N(0,1) 0.8*N(5,1) 2.22 2 
0.2*N(0,1) 0.4*N(5,1)+0.4*N(8,1) 2.36 3 
0.2*N(0,1) 0.4*N(5,1)+0.4*N(10,1) 2.36 3 
0.2*N(0,1) 0.3*N(5,1)+0.3*N(7,0.5)+0.2*N(11,0.5) 2.41 4 
0.2*N(0,1) 0.3*N(5,1)+0.2*N(8,0.5)+0.3*N(10,0.5) 2.41 4 
0.4*N(0,2) 0.6*N(10,1) 6.45 2 
0.4*N(0,2) 0.3*N(10,1)+0.3*N(12,1) 6.58 3 
0.4*N(0,2) 0.4*N(10,1)+0.2*N(12,1) 6.53 3 
0.4*N(0,2) 0.3*N(10,1)+0.2*N(12,1)+0.1*(14,1) 6.58 4 
0.4*N(0,2) 0.3*N(10,1)+0.2*N(11,1)+0.1*(15,2) 6.58 4 

EM estimate for threshold 

(Mean±SD) 
Background 

distribution 

Signal distribution True 

threshold

True k

ˆ 3k =  ˆ 2k =  ˆ 4k =  

0.3*N(0,1) 0.3*N(5,1)+0.4*N(10,0.5) 2.50 3 2.51±0.08 2.49±0.07 2.55±0.07 

0.5*N(0,0.5) 0.3*N(5,1)+0.2*N(10,0.5) 1.78 3 1.79±0.06 1.81±0.05 1.83±0.05 

0.5*N(0,1) 0.5*N(10,1) 5.00 2 5.03±0.07 4.98±0.07 5.05±0.06 

0.5*N(0,2) 0.5*N(10,1) 6.53 2 6.55±0.06 6.54±0.08 6.55±0.06 

0.3*N(0,1) 0.3*N(10,1)+0.4*N(12,1)+0.2*(14,2) 4.80 4 4.82±0.05 4.79±0.07 4.84±0.06 

0.5*N(0,2) 0.2*N(10,1)+0.2*N(12,1)+0.1*(14,2) 6.69 4 6.71±0.06 6.66±0.07 6.70±0.07 



Appendix Figure 2.  

Principle of false discovery rate. 
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