Pathology-guided transcriptome analysis

- Images of immunohistochemistry showing different brain regions.
- Bar chart showing correlation between pTDP-43 and percent of motor neurons.
- Pie chart indicating the percentage of common TDP-43 targets.
- Table listing gene names and correlation coefficients.

Premature polyadenylation of stathmin-2 is a hallmark of sALS

Zevic Melamud et al, 2019
Nucleolar antisense RNA foci correlate with TDP-43 mislocalization in C9 ALS

Aladesuyi et al., 2018

![Image of cellular localization](image)

Aladesuyi, Stauffer, Saberi et al, 2018
Co-CISH-IHC shows TDP-43 mislocalization precedes miR-218 reduction
1. Phenotypes reflect underlying anatomy of ALS pathobiology, which are “continuous” (not discrete);
2. Clinical progression reflects in vivo real time anatomy of neuropathology;
3. Phenotypes are not really useful in predicting biology;
4. Progression to respiratory neurons is a unique feature of ALS neurodegeneration;
5. ALS pathobiology desynchronizes, summates and saturates over time and space;
6. TDP-43 pathology in ALS has a “sweet spot”—that is, it translocates, aggregates and then disappears (at least in the spinal cord);
7. Readouts are loss of nuclear TDP-43 or cytoplasmic aggregation;
8. At the cellular level, the time course of neuron death is unknown;
9. Brain and spinal cord pathology should be looked at simultaneously;
10. The neuropathology literature is dominated by FTD-TDP-43, but ALS-TDP-43 has special attributes and opportunities;
11. Neuropathology can validate mechanistic predictions--Best opportunity is in spinal cord, and in bulbar and UMN predominant ALS.
Acknowledgements

Ravits Lab

Basic Research
Takuya Ohkubo, MD, PhD
Sandra Diaz Garcia, PhD
Marta Fernandez Bustamante, PhD
Maria Rodriguez
Amy Taylor
Bankole Aladesuyi
Ron Batra PhD
Florian Krach

Translational Research
Rosemarie Previte
Gil Gutierrez
Danielle Bussey

Collaborators

Don Cleveland, PhD, UCSD
Gene Yeo, PhD, UCSD

CReATe
Therapies for ALS & Related Disorders